
Page 55

4. Practical QMF Filterbank Design

4.1 Overview

The ideal QMF filters (H0(z) and H1(z)) in section 3.2.1 consist of perfect rectangular

frequency domain windows and consequently have infinite latency, order and

computational cost. This assumption has utility in exploring the general properties of

subband hierarchy but for a practical implementation, major compromises are necessary.

A primary limitation is that latency for real-time operation, as specified in section 1.2.2,

has an upper bound of Tmax≅20ms. Additionally, transferring the computational burden

from oscillator bank to filterbank has the risk, in the extreme, of resulting in worse

efficiency than classical AS (see section 3.1.7). Another impetus for reducing prototype

filterbank complexity is to maximise the number of filterbank instantiations that may be

multiplexed through the same hardware in order to provide a satisfactory number of

independent output streams as discussed in section 1.2.1. A related topic, discussed in

section 4.2 onwards, is in the modifications required for functional transparency.

The initial topic of this chapter is an investigation of efficient standard QMF filterbank

designs in the context of their application to MAS. Both FIR and IIR forms are possible

and each has attendant advantages and disadvantages. Practical QMF stage design is

parameterised by the classical interpolator design variables from section 3.1.1. which are

∆f (transition width) and δp and δs (passband and stopband ripple). It is appropriate to set

out their tolerances prior to documenting their impact on QMF design. δs controls the

relative power of quantisation noise transmitted during interpolation and, ultimately,

interpolated oscillator SNR; for high-fidelity synthesis δs= -80dB which is comparable to

that used in TOB’s of recent years (Jansen, 1991). The constraint upon δp is quite

subjective; an oscillator placed at a passband ripple maximum should have the same

perceived power as at a minimum. However, given δs, varying δp has little effect on

filterbank cost. Therefore the single design variable of interest is ∆f .
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4.2 FIR QMF Filterbank Design

4.2.1 Optimal Structure for a FIR QMF Stage

Finite Impulse Response (FIR) digital filter designs for QMF stages are well documented

in the literature (Crochiere and Rabiner, 1993) and hence a brief tutorial will suffice.

Invariably, symmetrical impulse responses are used which have a latency of precisely M

samples where the filter length is N=2M+1. Applying an inverse Fourier transform to the

ideal rectangular “brick wall” frequency response of H0(z), which is unity within the

bounds ±π/2 and zero elsewhere creates the well-known time series for h0[m] described

by eqn. (4.1), known as a sinc function. H1(z) is H0(z) displaced in frequency by fs/4

which has the time series (-1)m. When multiplied by h0[m], the desired impulse response

for h1[m] is obtained in eqn. (4.2). m is bounded such M≤m≤M and M is odd so that

coefficients at the extremes are non-zero to eliminate redundant latency. Example

functions are plotted in Fig. 4.1 for M=11 (N=23): note that h0[m] and h1[m] are non-

zero for all odd m. Truncation of the infinite time series gives rise to non-ideal filter

behaviour which can be minimised by the techniques discussed in the next section.
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Figure 4.1 Unwindowed FIR Responses for h0[m] and h1[m] for M=11, N=23
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Upsampling by I=↑2 is equivalent to inserting a zero-valued sample between each sample

of x0[n] and x1[n] to create x0[m] and x1[m]. This creates a modulo-2 activation pattern

of the coefficients in  h0[m] and h1[m]. When a sample is shifted into the first stage of

either filter, all samples at even values of m are zero and therefore only the coefficients at

odd values of m are required in the computation of the output. Conversely, when a zero-

valued sample is shifted into either filter, coefficients at even values of m are activated.

Fortunately, the only non-zero coefficient for even m is h0[0]=h1[0]=1. The filters are

therefore realised by applying an input sample to both a delay line of length (M+1)/2 and

a FIR of length M+1 comprising the coefficients at odd values of m, and generating two

output samples by commutating between, in sequence, the FIR and delay line: a simple

form of a polyphase structure as discussed in section 3.1.2.

Taking advantage of FIR symmetry reduces computation by “folding” the FIR such that

(x[-m]+x[m])×h0[m] replaces x[-m]×h0[-m]+x[m]×h0[m] because h0[-m]=h0[m]. The

only structural difference between a realisation of h0[m] and h1[m] is that the FIR

coefficients are inverted in sign in the latter. Therefore x0[n]+x1[n] is input to the delay

line while x0[n]-x1[n] is input to the FIR which has coefficients from h0[m]: the

subtraction of x1[n] is functionally equivalent to an inversion of coefficient signs. By this

means, the signals x0[n] and x1[n] are upsampled by ↑2, interpolated by their respective

impulse responses h0[m] and h1[m] and summed in an efficient structure which

minimises computation and storage as illustrated in Fig. 4.2. A mean of (M+1)/4

multiplies are required per y[m].

Σ

Σ z-(M+1)/2

H0(z2)

+

+

+

−

1

Commutation Sequence

0

y[m]

x0[n]

x1[n]

Figure 4.2 Optimal Realisation of FIR QMF Synthesis Stage



Page 58

4.2.2 FIR Frequency Response Optimisation

A truncated sinc function for H0(z) is equivalent to a rectangular window which has

poor frequency domain performance. A solution is to employ the Kaiser window FIR

design technique which minimises filter length by shaping the frequency response such

that it is closely bounded by the tolerance margins ∆f and δ=δs=δp from which M is

determined by eqn. (4.3). The formulae for the time-domain window is based on a

zeroth-order Bessel function and is in the literature (Crochiere and Rabiner, 1993). Note

that the same ripple is specified for passband and stopband. Kaiser filters are sub-optimal

because, in practice, the height of the first stopband sidelobe is closest to δ and the rest

fall monotonically below this value, constituting excess stopband gain (see Fig. 4.3).

However, it is simple to compute and hence a popular design technique where strict

optimality is not required.
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28 72
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.

δ
∆

(4.3)

An alternative to windowing is the Parks and McClellan (1972) “equiripple” design

algorithm. This takes the more specific parameters of {fpass, fstop, δp, δs}and applies an

iterative technique, the Remez exchange algorithm, to adjust the sidelobe amplitudes in

the passband and stopband to conform to the equiripple condition (i.e. of equal height).

For a given specification, it achieves a design with minimum M. Empirical formulae for

M are given in eqns. (4.4, 4.5, 4.6) which are quoted from (Crochiere and Rabiner,

1993). It differs from the Kaiser technique in that the condition δp=δs is not necessary.

Specifying δp≠ δs results in lower M (and therefore lower latency) but also generates

non-zero coefficients at even-numbered values of m making it more expensive to

compute than a windowed sinc design. However, setting δp= δs and fpass=π-fstop  results in

an optimally windowed sinc function with zero coefficients at even-numbered m, of less

M than the Kaiser window. Fig. 4.3. provides a visual comparison of the performance of

the two FIR design methods for a typical MAS specification as indicated by section

6.4.4.
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Kaiser Window M=25, N=51 Parks-McClellan M=23, N=47

Gain (dB) vs Frequency (Nyquist=1.0) Gain (dB) vs Frequency (Nyquist=1.0)

Figure 4.3 FIR designs for H0(z) with ∆f=0.1, δp=δs=-80dB

4.3 MAS Normalisation Techniques for QMF FIR Filterbanks

The objective of achieving functional transparency requires consideration. For MAS to

integrate with existing spectral modelling techniques, it should appear to the high-level

SME, and ultimately the musician, as a TOB (granted the need for a priori data).

However, fragmentation of a note partial series across different subbands in a subband

hierarchy corrupts (i) time, (ii) frequency and (iii) phase relationships between partials.

Normalisation techniques which address each of these problems in an FIR QMF

filterbank are presented in the following sub-sections, and form the basis of those used in

the IIR QMF implementation of choice, discussed in section 4.4.
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4.3.1 Latency Normalisation
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Assume the case of a note partial series allocated across a constant-Q series of subbands

as illustrated in section 3.2.3. High frequency partials in the fullband (k=0) are not

subject to any filterbank delay. Lower frequency partials are allocated deeper in the

hierarchy and for allocation level k are subject to a latency of Tfb(k) according to eqn.

(4.7) which exponentiates with k. Therefore at note onset, high frequencies emerge

before low frequencies. Though this phenomena is a reflection of some natural processes,

it is desirable to align envelope features between partials for accurate resynthesis: feature

relationships in PWL envelope data encapsulate the spectral characteristics of the

analysed source tone and should remain undistorted by the filterbank. A simple solution

is to include delay lines for inputs to subbands k<K such that latency from any level in the

filterbank is normalised to the maximum of Tfb(K). This is possible because FIR QMF

stages exhibit a frequency-independent group delay of M samples. The length of delay

line d(K,k) required for level k is expressed by eqn. (4.8). The deepest subbands at level

K do not require delay-lines.

d K k M k KK k( , ) ( )= −−2 1  for < (4.8)

4.3.2  Frequency Normalisation

Once an oscillator x is allocated to the optimal subband sk,l, its PWL frequency envelope

Fx[m] - from eqn. (1.1) - requires translation into the context of sk,l such that the desired

frequency appears at the filterbank output. This is achieved via the linear relationship of

eqn. (4.9) which generates the required digital frequency envelope Ωx[m]. If sk,l is

inverted in frequency (by interpolation via an odd number of H1’s, see section 3.2.2),

Ωx[m] must be pre-inverted to cancel the effect. The computational overhead in a PWL

context is trivial as only normalisation of breakpoints is necessary, and the divisor for
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level k is 2-k when frequencies are prenormalised to the k=0 fullband as occurs in the

TOB (Jansen 1991).
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In a MAS paradigm of depth K=3, Ωx[m] is decimated by a factor of D∈{2, 4, 8} or

undecimated for the fullband case of k=0. The decimated frequency envelope is denoted

by Ωx[n] where m=Dn. Now consider the allocation of x somewhere in the fully-

overlapping octave spaced subband series sk,1.  It is desirable that the corresponding

decimated phase accumulator Φx[n] should track the parabolic trajectory of its

undecimated equivalent Φx[m] so that errors introduced by decimated phase

accumulation are eliminated. This is achieved by a trapezoidal integration over the

decimation interval of the ‘missing’ Ωx[m] envelope samples as expressed in eqn. (4.10):

φ′x[n] is the phase-normalisation term described in the next section. The 2-k term is

necessary to denormalise Ωx[n] back to the context of Ωx[m] in which the integration

takes place. However, since D=2k , the multiplier 2-kD resolves to unity. For clarity, Fig.

4.4 illustrates an example for D=8 (k=3) in which the missing Ωx[m] samples are

assumed to lie on a line segment linking {Ωx[n], Ωx[n+1]}.

Ωx[n-1] Ωx[n]

Ωx[m]

Integration Interval D

a

Figure 4.4 Trapezoidal Integration of Decimated Frequency Envelope
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4.3.3 Phase Normalisation

At the output of the filterbank, it is desirable that each sinusoid should have correct

relative phase: a property usefully termed as “phase transparency”. To analyse the phase

characteristics of the QMF FIR synthesis filterbank, consider the properties of a single

stage. A stationary sinusoid is applied to each input, both lowpass (x0[n]) and highpass

(x1[n]) according to eqns. (4.11, 4.12). At n=0, x0[n] and x1[n] have instantaneous

phase φ0 and φ1 respectively. After a delay of M samples at the output, the interpolated

baseband of x0[n] preserves its phase of φ0 at y[m=M] as expressed in eqn. (4.13). The

only transformation is a halving of relative digital frequency Ω0 independent of φ0.
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However, in the context of the output sample rate, highpass filter H1 suppresses the

baseband signal (Ω1/2) of x1[n] and passes the sideband at π−(Ω1/2). As phase is the

integral of frequency, the phase of the x1[n] sideband at y[m=M] (the product of the

baseband phase φ1 and the frequency ratio of sideband to baseband) is distorted from its

desired value φ1 and is, furthermore, a function of oscillator frequency Ω1. However,

substituting a frequency-dependent phase factor in eqn. (4.12) to produce eqn. (4.14)

cancels out this phase distorting term in eqn. (4.13) such that the interpolated sideband

of x1[n] has the desired phase φ1 at y[m=M].

x n A n1
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This principle may be extended to a QMF filterbank (e.g. the complete binary tree of Fig.

3.7) which includes delay lines for latency normalisation. According to eqn. (4.8), latency

is a constant d(K,0) samples irrespective of allocation depth and therefore phase

relationships are preserved during interpolation. Phase normalisation can therefore be

interpreted as the adjustment of baseband phase to give the required sideband phase. An

oscillator x allocated to subband sk,l has actual baseband frequency fs2
-k(Ωx [n]/2π) via

eqn. (4.9) which, after suppression of unwanted side-bands in the filterbank, corresponds

to the desired frequency of sideband Fx[m] at the output. To ensure Fx[m] has the desired

phase φx[m] requires substitution of the normalising eqn. (4.15) in eqn. (4.10).

For a stationary sinusoid, eqn (4.15) need only be computed once. However, for

sinusoids in AS with time-varying frequency, eqn. (4.15) must be computed each sample

period to maintain precise phase relationships. As the computation involves a division,

this constitutes a large potential overhead. It is redundant, however, in the case of the

subband series sk,l:{k=0..K,l=1} which comprises a cascade of H0 lowpass filters where

the phase normalising term in eqn. (4.5) is unity: the baseband image itself is passed by

the filterbank. This cascade is functionally equivalent to the fully-overlapping octave

spaced subband decomposition discussed in section 3.1.6 and is an advantageous

property of the FIR QMF filterbank (see section 4.5).

4.4 IIR QMF Design

Restricting the subject of Infinite Impulse Response (IIR) filter theory to that of QMF

stage design singles out the family of polyphase all-pass (PA-IIR) filters that have low

computational cost, and narrow tolerances for ∆f, δs and δp. The building block of a PA-

IIR QMF is a single stage allpass filter (Oppenheim and Schafer, 1989), which has a

unity gain, but non-linear phase response governed by a single coefficient α (the z-

transform consists of a pole at -1/α and a zero at -α) with a difference equation of
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y[n]=α(x[n]-y[n-2])+x[n-2]. Prime advantages are that it is cheap to compute,

unconditionally stable, and because it has unity gain, may exploit the full dynamic range

of fixed-point arithmetic (in contrast to other IIR building-blocks such as 2nd order

sections). The phase response of a cascade of n all-pass filters with response G(z) is the

sum of the individual phases dictated by αi:{1≤i≤n}as expressed in eqn. (4.16).
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Fig. 4.5. illustrates the phase response of a state-of-the-art high-performance IIR

polyphase allpass filter as published by (Hart et al, 1993); an example which is most

suitable for closer investigation. Two parallel all-pass cascades are used; G0 and G1 (G1

is in series with a unit delay z-1). G0 has length n=6 with αi∈{0.984964, 0.798278,

0.914901, 0.593341, 0.297311, 0.040409} and G1 has length n=5 with αi∈{0.865132,

0.953132, 0.708912, 0.452729, 0.149350}. Coefficients are derived by an iterative

design procedure. A signal is input into both cascades and at the output it can be seen

that the relative phase difference (bold line) is zero for 0≤z≤π/2 (i.e. G0 and G1 in-phase)

and -π radians for π/2≤z≤π (i.e. G0 and G1 in antiphase) with a narrow transition width.

Clearly, summing the output creates a half-band filter with gain ×2 for 0≤z≤π/2 and ×≅0

for π/2≤z≤π, equivalent to the H0 filter in a QMF stage.

-40.82
-37.68
-34.54
-31.4

-28.26
-25.12
-21.98
-18.84
-15.7

-12.56
-9.42
-6.28
-3.14

0

0 3.14z (radians)

phase
(radians)

p1=phs(G0(z))

p2=phs(G1(z))

p3=phs(z^-1)

p1-(p2+p3)

Figure 4.5 Phase Response of PA-IIR Filter
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To translate G0, G1 into an equivalent QMF synthesis stage is straightforward. However

for a polyphase implementation equivalent to the FIR QMF of Fig. 4.2, filters with the

response G0(z2) and G1(z2) are required. This is achieved by decimating the difference

equation by ↓2 to y[n]=α(x[n]-y[n-1])+x[n-1] which permits filter computation at the

lower sample rate with a net cost of 5.5 multiplies per y[m]. The commutation sequence

implements the required z-1 series delay for G1. Fig. 4.6 illustrates the resulting structure.

Half-band interpolation of the low-pass signal x0[n] is performed as previously described

giving the standard QMF response H0(z). Interpolation of the high-pass signal x1[n] by

QMF response H1(z) is realised by sending an inverted copy of x1[n] to G1. This causes

antiphase cancellation of the outputs of G0, G1 over 0≤z≤π/2 and in-phase superposition

over π/2≤z≤π and therefore realises H1(z). Gain (×2) from superposition is normalised to

unity at the output. The actual normalised frequency response is illustrated in Fig. 4.7:

note that δs =-100dB which is an improvement of 20dB over the specification in section

4.1 of δs=-80dB.
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Figure 4.6 IIR Polyphase Allpass QMF Synthesis Stage

Gain (dB) vs. Frequency (Nyquist==1.0)

Figure 4.7 PA-IIR H0(z) Response
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4.4.1 Normalisation with Non-linear Phase

Frequency normalisation in a QMF filterbank is independent of its phase response and

hence the method in section 4.3.2 also applies to the PA-IIR design. However, the group

delay of the PA-IIR stage is frequency-dependent in contrast to the fixed delay of M

samples in a symmetric FIR filter. This means that phase relationships are distorted and

envelope features are skewed by a PA-IIR filterbank during interpolation. To normalise

phase therefore, requires the inclusion of the filterbank transfer function in eqn. (4.15).

Latency normalisation by fixed-length delay lines (as proposed for the FIR QMF in

section 4.3.1) is not possible as they function in the context of linear phase alone.

An interesting software alternative is to compute the latency Tx for a high-Q partial x at

frequency f(x) from the transfer function and “pre-skew” the Ax[n], Fx[n] envelopes by

Tfb(K)-Tx, where Tfb(K) is the PA-IIR filterbank worst-case latency. In a PWL envelope

context, this may be done by attaching horizontal segments of length Tx to the start of the

Ax[n], Fx[n] envelopes at note onset where Tx is computed from an LUT. However, the

actual delay of a PA-IIR QMF stage is small, relative to the example PM-FIR QMF’s

discussed in section 4.2.2. As illustrated by Fig. 4.5 the greatest delay is -5π radians at

z=π/2: that is about 10 samples.

Phase
(Radians)

fs/4==1.0

Figure 4.8 Required Passband Phase Response of P(z)

A structural solution to both of these problems is to incorporate an allpass phase-

equaliser P(z) (|P(z)|=1 for ∀z) into the prototype PA-IIR QMF stage output such that

its net phase response from input to output is approximately linear. It is then it is

functionally interchangeable with an FIR QMF stage and the algorithms of sections 4.2.1
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and 4.2.2 are applicable. Modularity of the QMF filterbank structure is retained

simplifying implementation. The alternative is to employ a single equaliser at the output,

on the assumption that a single transfer equation characterises the entire filterbank.

Unfortunately, use of subband hierarchy in MAS means that at any particular value of

absolute frequency, a signal can be sourced from one of a number of overlapping

subbands, each with a unique transfer function and hence a single equaliser cannot be

used. However, a problem with P(z) is illustrated in Fig. 4.8 in  that it has a phase

response with a local minimum in the passband which cannot be realised by an allpass IIR

filter which, by definition, has maximum phase. It is concluded that phase-linearity, and

hence phase normalisation, is impractical for this PA-IIR QMF filterbank but that latency

normalisation by envelope pre-skewing appears quite feasible and efficient.

4.5 Comparing PM-FIR and PA-IIR Performance for MAS

QMF Stage: Generic FIR PM-FIR from Fig. 3.5 (M=23) PA-IIR

Storage (samples) (M+1) 24 12

Mults per y[m] (M+1)/4 6 5.5

Adds per y[m] 1+(M+1)/4 7 12

Table 4-1 Relative Complexity of FIR and PA-IIR QMF Stages

A comparison of the transition width characteristics between Figs. 4.3 and 4.7

demonstrates that the PA-IIR approach has superior performance: a feature that is a

critical determinant in the choice of QMF filterbank for MAS as shall become clear in the

next section. Additionally, δs=-100dB rather than δs=-80dB from section 4.1. The PM-

FIR and PA-IIR QMF designs share the same general polyphase model (respectively

Figs. 4.2 and 4.6) and differ only in the structure of their component phase shifters which

may both function optimally in fixed-point arithmetic. Respective storage and

computational requirements are tabulated in Table 4-1. Complexity of the PA-IIR stage
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is thus comparable to the PM-FIR examples of Fig. 4.3. ( which are good designs for

typical MAS applications, see section 6.4.4)

If a non-linear phase response is tolerated, a PA-IIR implementation is most efficient in

the light of its ∆f performance. As discussed in section 4.3.3, phase normalisation in the

PM-FIR QMF is complex to implement, but the subband series sk,l:{k=0..K,l=1} offers

phase transparency by default for subbands where the majority of low-frequency

oscillators will be allocated in MAS. Sensitivity of the ear is most critical up to around

5kHz and diminishes with increasing frequency (Parsons, 1987). Phase has particular

relevance in the context of stereo and sound spatialisation, but such a criterion does not

apply so strongly to MAS as the filterbank is accumulating monoaural sources for

subsequent spatialisation by an unspecified post-processor (see section 8.3.1). In the

general case, altering the relative partial phases in a musical tone has minimal impact

upon the perception of its timbre (Plomp, 1976), but exceptions to the rule can be

contrived.

4.6 On Non-infinitesimal ∆∆f in a Subband Hierarchy

QMF Stage

H0(z) H1(z)

∆f

Level k DC fs/2

0

1

2

3

Deadbands

Figure 4.9 Deadbands in Spectral Hierarchy due to Non-infinitesimal ∆f

The normalisation schemes outlined in this chapter are, as yet, insuffient to produce a

functional MAS paradigm. A critical side-effect, as Fig. 4.9 illustrates, is that gradual

passband rolloff appears in the transition widths of a practical QMF stage (due to non-
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infinitesimal ∆f) which causes attenuation towards the high frequency end of H0 and the

low frequency end of H1. As discussed in section 3.1.1, an oscillator with time-varying

frequency must not enter this region because it will suffer fading as a function of

frequency, giving rise to a parasitic amplitude modulation effect that will affect the

quality of perceived tone. Also, a sideband will also appear in the transition region,

mirrored in z=π/2, which is boosted above the inaudible level of stop-band gain (δs) with

the danger of becoming perceptible. Fortunately, this eventuality is prohibited by marking

the transition widths as “deadbands”, and restricting oscillator allocation to filter

passbands which is permissible because time-invariant filterbanks are presumed with

constant ∆f.

The effect of deadbands is not isolated to individual QMF stages; sibling stages inherit

the deadbands of their parents, falling under their “shadow” in absolute frequency terms.

This is because an oscillator may be correctly interpolated through several passbands

before entering the deadband of a stage further up the hierarchy due to cascaded,

multistage interpolation. These deadband effects are eliminated by extending the

allocation policy of section 3.2.3. Oscillators that are predicted according to their a priori

parameters {fmin(x), fmax(x)} to be in danger of falling into a deadband are promoted to

the subband that lies immediately above the deadband thus logically excluding transition

widths from the MAS paradigm: a formal algorithm is proposed in Chapter 5.

4.7 Review

The PM-FIR and PA-IIR designs outlines offer two efficient alternatives to QMF

implementation. The former has poorer ∆f performance but is linear-phase. The practical

problems of achieving functional transparency are identified. Frequency normalisation

requires trivial pre-processing of frequency envelope breakpoints after subband

allocation. Latency normalisation by delay lines is practical if the QMF is linear-phase,

but invalid for the phase non-linear PA-IIR, though envelope pre-skewing is a feasible

solution. The most difficult issue is phase normalisation; intractable in a PA-FIR and only

valid in a PM-FIR for the series sk,l:{l=1}. Finally, non-ideal filter behaviour manifests
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itself as an impinging of a non-infinitesimal ∆f upon the idealised MAS subband hierarchy

which creates deadbands where oscillators cannot be allocated.


